a2 United States Patent

Cohen et al.

US009477800B1

US 9,477,800 B1
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(1)
(52)

(58)

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR
AUTOMATICALLY SELECTING A
CONSTRAINT SOLVER ALGORITHM IN A
DESIGN VERIFICATION ENVIRONMENT

Applicant: Cadence Design Systems, Inc., San
Jose, CA (US)

Inventors: Daniel Asher Cohen, Los Gatos, CA
(US); John LeRoy Pierce, Temple, NH
(US); Nir Weiss, San Diego, CA (US)

Assignee: Cadence Design Systems, Inc., San
Jose, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/619,629

Filed: Feb. 11, 2015

Int. CL.

GOG6F 17/50 (2006.01)

U.S. CL

CPC e, GO6F 17/505 (2013.01)

Field of Classification Search

CPC ... GO6F 17/504; GO6F 17/5009; GOG6F
17/5081

USPC e 716/106, 107

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,513,144 B1* 12003 Kim GO1R 31/31834
703/16

7,757,191 B2* 7/2010 Chan GO1R 31/31831
703/16

7,870,523 B1* 1/2011 Uzielc.c.... GOG6F 11/263
703/2

8,370,273 B2* 2/2013 Hung ... GOG6F 17/504
706/12

8,904,321 B1* 12/2014 Cohen GO6F 17/5009
716/106

9,202,004 B1* 12/2015 Cohen GO6F 17/5081
9,202,005 B2* 12/2015 Goswami GO6F 17/5009

2015/0067622 Al* 3/2015 Goswami GO6F 17/5081

716/106
* cited by examiner

Primary Examiner — Sun Lin
(74) Attorney, Agent, or Firm — Holland & Knight LLP;
Mark H. Whittenberger, FEsq.

(57) ABSTRACT

The present disclosure relates to a computer-implemented
method for electronic design verification. Embodiments may
include providing, using one or more processors, an elec-
tronic design verification environment having a plurality of
randomize calls associated therewith. Embodiments can also
include selecting one of the plurality of randomize calls for
analysis at a constraint solver engine and iteratively analyz-
ing the selected randomize call using a plurality of constraint
solver algorithms. Embodiments can also include automati-
cally determining a most effective constraint solver algo-
rithm for the selected randomize call.

17 Claims, 5 Drawing Sheets

providing, usicg one or more processors, as clectonic design verification
enviionment having a pharality of randemize calls associated therawith

402 —

Y

selecting one of the plurality of randorize calls for analysis at a comsiraint
solver engine

404
A 4
iteratively analyzing the selected randomize call using a plurality of
constraint soiver algorithms
405 7

automaticaily defermining a mest effective constraint selver slgorithm for
the selected randomize call

408

US 9,477,800 B1

Sheet 1 of 5

Oct. 25, 2016

U.S. Patent

{1y JoLid)
A3 E

naul paziusopue
WOl PoIenoied snjea
suebe paeyoays nding

uoieiado josapow ubisag

// g F P
zis uBIsa(] suonEnbByUoTy L0l

T seeD Gyl -~ WDl

anjea psienoeo-sid

1suiebe payosyo Inding

juiely 10}
2 UIIM B1BD SBZILOPUR)
1891 Yor3 1189 wopuey

senjeA g 1oexs soypeds
1S9} Uorg [188) Palosli(]

0oL

US 9,477,800 B1

Sheet 2 of 5

Oct. 25, 2016

U.S. Patent

naul paspuiop
Lo} PBIBINOIED 8njeA

suebe payosys inding

(v J0ld)

¢ old

suonemByuony 6,01
s2IECy Gl — L0

ALY

R

SRR

juies 01
B UlyIMm BIBD Saziopue)
188] yoeD [1S9] WopueRy

1474

US 9,477,800 B1

Sheet 3 of 5

Oct. 25, 2016

U.S. Patent

{g1) Wiomauy

sseo0.d
UON0RIESs
S1 vso
uanenydde
1 vo3
0

Jualo

uoieoidde

/ MIOMIBU
Jepnie0

(#1) Hompu

uopeoydde
FEEHY

D

@m uoneoidde
i

uoneondde
B

U.S. Patent Oct. 25, 2016 Sheet 4 of 5 US 9,477,800 B1

400

providing, using one or more progessors, an electronic design verification
environment having a plurality of randomize calls associated therewith

402 —

selecting one of the phurality of randomize calls for analysis at a constraint
solver engine

AD4 -/

teratively analyzing the selected randomize call using a plurality of
constraint solver aigorithms

406 —

automatically deternuning a most effective constraint solver algorithm for
the selected randorize call

408 -/

FIG. 4

US 9,477,800 B1

Sheet 5 of 5

Oct. 25, 2016

U.S. Patent

G Ol

MBI W

£

B

3.

b3

i

R R PR

seoBim A sopmes waobe Busbo weous usaboy fue
kit B S0y uselie RS SaEIELR I

B sapeaR o s uomim e Sausrdiagy
Guen &% uvabas g pounh sl Wi seeanu

806

%0z (1

A VL A
S8 ALRRT
$5 e wey
BT AL 8T
55 BRERGY

Woﬁ..‘.?.}........i

././f. M
.
e,

SERBRAR L Lol s e s i LoD Bt R Tl

05 FTHOPUDE Y0P 204 alnieacs Sumionl 10 BE0RIE SOW 3 UELIGEIE IRAIY MR 2instani of unt i

US 9,477,800 B1

1

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR
AUTOMATICALLY SELECTING A
CONSTRAINT SOLVER ALGORITHM IN A
DESIGN VERIFICATION ENVIRONMENT

FIELD OF THE INVENTION

The present disclosure relates to electronic designs, and
more specifically, to a method for automatically selecting a
most appropriate constraint solver algorithm to use for each
randomize call in a design verification environment.

DISCUSSION OF THE RELATED ART

In the world of electronic design automation (“EDA”),
many different approaches have been used in order to verify
the operation of an integrated circuit (“IC”). Customers run
tens of thousands of simulations to verify their designs. This
takes thousands of hours and generates hundreds of giga-
bytes of data. At the end they are still not sure if they have
run enough simulations and have no way to predict how
many simulations they need to run before running them.
Existing approaches also fail to adequately predict the
impact of adding another mode or field on the number of
required simulations. Coverage may be manually written to
understand how much of the stimulus they need to generate
has actually been generated. As random fields and constraint
rules are added to their stimulus there is no way to predict
the impact on the number of tests they need to run to achieve
coverage.

Newer methods for IC verification have appeared as IC
complexity has increased. In this way, simulation
approaches began as a directed test where static tests were
configured to provide complete stimulus for every IC func-
tion. In time, and as shown in FIG. 1, the transition to
randomization revolutionized the way in which testing was
performed. Dynamic tests may provide a random stimulus to
supply an acceptable subset of input for every IC function.
Automatic test pattern generation (“ATPG”) supplanted
fault simulation when the manual tuning of test vectors
became too complex (late 1990s) and hardware verification
languages (“HVLs”) were developed to support randomized
test with constraints, coverage, and classes (early 2000s).
These improvements significantly increased the engineer’s
ability to build tests.

As shown in FIG. 2, randomization often has difficulty
scaling and is becoming increasingly insufficient as the state
space continues to grow exponentially. The current state
space is absurdly large (e.g., 1 M register bits=10"300000
number of states, 30K registers @32 bits~1M bits> many
chips are already there). Accordingly, verification farms are
starting to limit testability as more machines simply means
more tests and the associated physical limits (and cloud
security) constrain test scaling. Coverage attempts to mea-
sure but even that is stressed as verification plans define
functions to be verified and crosses attempt to connect
dependent requirements. Moreover, the coverage definition
may be a manual process, which only adds to the problem.

Similarly, locating bugs is becoming increasingly difficult
as IC complexity exceeds verification computing power.
Existing techniques such as mutation-based testing act
merely as an insurance policy. The designer may not know
how many runs are needed to achieve appropriate distribu-
tion and tests inevitably overlap, which generates questions
as to how the ranking helps complex verification. Determin-
ing what tests are critical to assess basic functionality and

10

15

20

25

30

35

40

45

50

55

60

65

2

the possibility of false-positive regression is also possible
(e.g. if 1 bit added to the configuration register, etc.). Some
customers are often using constrained random test benches
that use a constraint solver engine to randomize, which
configuration of the design they will run as well as what
random data they will want to push through the design to test
it.

SUMMARY OF DISCLOSURE

In one or more embodiments of the present disclosure, a
computer-implemented method for electronic design verifi-
cation is provided. The method may include providing,
using one or more processors, an electronic design verifi-
cation environment having a plurality of randomize calls
associated therewith. The method may also include selecting
one of the plurality of randomize calls for analysis at a
constraint solver engine and iteratively analyzing the
selected randomize call using a plurality of constraint solver
algorithms. The method may also include automatically
determining a most effective constraint solver algorithm for
the selected randomize call.

One or more of the following features may be included.
In some embodiments, the method may further include
generating at least one result set indicating the relative
effectiveness of each of the plurality of constraint solver
algorithms for the selected randomize call and storing the at
least one result set. The method may also include automati-
cally determining a proportion of one or more of the
plurality of constraint solver algorithms for the selected
randomize call. The method may further include applying
each of the plurality of constraint solver algorithms in the
determined proportion during a simulation. The method may
also include selecting the most effective constraint solver
algorithm and performing a simulation based upon, at least
in part, the stored result set. In some embodiments, itera-
tively analyzing may include determining a coverage
amount created by each of the plurality of constraint solver
algorithms.

In one or more embodiments of the present disclosure a
computer-readable storage medium having stored thereon
instructions, which when executed by a processor result in
one or more operations for electronic design verification.
Operations may include providing, using one or more pro-
cessors, an electronic design verification environment hav-
ing a plurality of randomize calls associated therewith.
Operations may also include selecting one of the plurality of
randomize calls for analysis at a constraint solver engine and
iteratively analyzing the selected randomize call using a
plurality of constraint solver algorithms. Operations may
also include automatically determining a most effective
constraint solver algorithm for the selected randomize call.

One or more of the following features may be included.
In some embodiments, operations may further include gen-
erating at least one result set indicating the relative effec-
tiveness of each of the plurality of constraint solver algo-
rithms for the selected randomize call and storing the at least
one result set. Operations may also include automatically
determining a proportion of one or more of the plurality of
constraint solver algorithms for the selected randomize call.
Operations may further include applying each of the plural-
ity of constraint solver algorithms in the determined pro-
portion during a simulation. Operations may also include
selecting the most effective constraint solver algorithm and
performing a simulation based upon, at least in part, the
stored result set. In some embodiments, iteratively analyzing

US 9,477,800 B1

3

may include determining a coverage amount created by each
of the plurality of constraint solver algorithms.

In some embodiments, a system for electronic design
verification is provided. The system may further include one
or more processors configured to provide an electronic
design verification environment having a plurality of ran-
domize calls associated therewith. The one or more proces-
sors may be further configured to select one of the plurality
of randomize calls for analysis at a constraint solver engine.
The one or more processors may be further configured to
iteratively analyze the selected randomize call using a
plurality of constraint solver algorithms. The one or more
processors may be further configured to automatically deter-
mine a most effective constraint solver algorithm for the
selected randomize call.

One or more of the following features may be included.
In some embodiments, the one or more processors may be
further configured to generate at least one result set indicat-
ing the relative effectiveness of each of the plurality of
constraint solver algorithms for the selected randomize call.
The one or more processors may be further configured to
store the at least one result set. The one or more processors
may be further configured to automatically determine a
proportion of one or more of the plurality of constraint
solver algorithms for the selected randomize call. The one or
more processors may be further configured to apply each of
the plurality of constraint solver algorithms in the deter-
mined proportion during a simulation. The one or more
processors may be further configured to select the most
effective constraint solver algorithm and perform a simula-
tion based upon, at least in part, the stored result set.

Additional features and advantages of embodiments of the
present disclosure will be set forth in the description which
follows, and in part will be apparent from the description, or
may be learned by practice of embodiments of the present
disclosure. The objectives and other advantages of the
embodiments of the present disclosure may be realized and
attained by the structure particularly pointed out in the
written description and claims herecof as well as the
appended drawings.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of embodiments of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of embodiments of the present
disclosure and are incorporated in and constitute a part of
this specification, illustrate embodiments of the present
disclosure and together with the description serve to explain
the principles of embodiments of the present disclosure.

FIG. 1 is a diagram depicting existing CSA selection
processes:

FIG. 2 is a diagram depicting existing CSA selection
processes;

FIG. 3 is a diagram depicting an embodiment of a
constraint solver algorithm (“CSA™) selection process in
accordance with the present disclosure:

FIG. 4 is a flowchart depicting operations consistent with
the CSA selection process in accordance with an embodi-
ment of the present disclosure; and

FIG. 5 is a diagram depicting an embodiment of CSA
selection process in accordance with the present disclosure.

DETAILED DESCRIPTION

Some EDA tools, such as those available from the
Assignee of the present disclosure, may allow an engineer to

10

15

20

25

30

35

40

45

50

55

60

65

4

run massive verification regressions. Accordingly, these
tools may generate a certain distribution of values from the
randomize calls in their environment. If the regression was
performed with a different constraint solver algorithm then
a different distribution would result. The best distribution is
the one that matches the coverage model best. Unfortu-
nately, each randomize call in the environment is different so
the best algorithm will be different for different calls.

Referring now to FIGS. 3-5, embodiments of CSA selec-
tion process 10, discussed below in further detail, may allow
for automatic selection of the most appropriate constraint
solver algorithm for use with each randomize call in a
particular verification environment. In this way, CSA selec-
tion process 10 may be configured to provide a flow to run
the simulation (or regression) once. At each randomize call,
CSA selection process 10 may iterate many times for each
available constraint solver algorithm. CSA selection process
10 may then determine how much coverage (e.g., unique
values) is obtained from each algorithm. This may be
mapped to both user and automatically generated coverage.
The results may be written out and stored so that future
simulations know the best constraint solver algorithm to
pick for each randomize call (or one algorithm may be run
more often for a given call).

Reference will now be made in detail to the embodiments
of the present disclosure, examples of which are illustrated
in the accompanying drawings. The present disclosure may,
however, be embodied in many different forms and should
not be construed as being limited to the embodiments set
forth herein. Rather, these embodiments are provided so that
this disclosure will be thorough and complete, and will fully
convey the concept of the disclosure to those skilled in the
art.

As will be appreciated by one skilled in the art, the present
disclosure may be embodied as a method, system, or com-
puter program product. Accordingly, the present disclosure
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.”
Furthermore, the present disclosure may take the form of a
computer program product on a computer-usable storage
medium having computer-usable program code embodied in
the medium.

As used in any embodiment described herein. “circuitry”
may include, for example, singly or in any combination,
hardwired circuitry, programmable circuitry, state machine
circuitry, and/or firmware that stores instructions executed
by programmable circuitry. It should be understood at the
outset that any of the operations and/or operative compo-
nents described in any embodiment herein may be imple-
mented in software, firmware, hardwired circuitry and/or
any combination thereof.

As used in any embodiment herein, the terms “simula-
tion” and “verification” may refer to the concept of testing
an electronic design and may include any actions performed
by a software or hardware engine.

Any suitable computer usable or computer readable
medium may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer-usable, or computer-
readable, storage medium (including a storage device asso-
ciated with a computing device or client electronic device)
may be, for example, but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, apparatus, or device, or any suitable combination

US 9,477,800 B1

5

of the foregoing. More specific examples (a non-exhaustive
list) of the computer-readable medium may include the
following: an electrical connection having one or more
wires, a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory (CD-ROM), an optical storage device. In
the context of this document, a computer-usable, or com-
puter-readable, storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with the instruction execution system, apparatus,
or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program coded
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations of the
present invention may be written in an object oriented
programming language such as Java, Smalltalk, C++ or the
like. However, the computer program code for carrying out
operations of the present invention may also be written in
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

The present disclosure is described below with reference
to flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored
in a computer-readable memory that can direct a computer
or other programmable data processing apparatus to function
in a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-

10

15

20

25

30

35

40

45

50

55

60

65

6

ture including instructions which implement the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other pro-
grammable apparatus provide steps for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

One or more hardware description languages may be used
in accordance with the present disclosure. Some hardware
description languages may include, but are not limited to,
Verilog, VHDL, SystemC, SystemVerilog and Verilog-
AMS. Various other hardware description languages may
also be used as well.

Referring to FIG. 3, there is shown a CSA selection
process 10 that may reside on and may be executed by server
computer 12, which may be connected to network 14 (e.g.,
the Internet or a local area network, etc.). Examples of server
computer 12 may include, but are not limited to: a personal
computer, a server computer, a series of server computers, a
mini computer, and a mainframe computer. Server computer
12 may be a web server (or a series of servers) running a
network operating system, examples of which may include
but are not limited to: Microsoft® Windows® Server,
Novell® NetWare®; or Red Hat® Linux®, for example.
(Microsoft and Windows are registered trademarks of
Microsoft Corporation in the United States, other countries
or both; Novell and NetWare are registered trademarks of
Novell Corporation in the United States, other countries or
both; Red Hat is a registered trademark of Red Hat Corpo-
ration in the United States, other countries or both; and
Linux is a registered trademark of Linus Torvalds in the
United States, other countries or both.) Additionally/alter-
natively, CSA selection process 10 may reside on and be
executed, in whole or in part, by a client electronic device,
such as a personal computer, notebook computer, personal
digital assistant, or the like.

The instruction sets and subroutines of CSA selection
process 10, which may include one or more software mod-
ules, and which may be stored on storage device 16 coupled
to server computer 12, may be executed by one or more
processors (not shown) and one or more memory modules
(not shown) incorporated into server computer 12. Storage
device 16 may include but is not limited to: a hard disk drive;
a solid state drive, a tape drive; an optical drive; a RAID
array; a random access memory (RAM); and a read-only
memory (ROM). Storage device 16 may include various
types of files and file types including but not limited, to
hardware description language (HDL) files, which may
contain, for example, port type descriptions and executable
specifications of hardware blocks.

Server computer 12 may execute a web server application,
examples of which may include but are not limited to:
Microsoft IIS, Novell Webserver™, or Apache® Webserver,
that allows for HTTP (i.e., HyperText Transfer Protocol)
access to server computer 12 via network 14 (Webserver is
a trademark of Novell Corporation in the United States,
other countries, or both; and Apache is a registered trade-
mark of Apache Software Foundation in the United States,
other countries, or both). Network 14 may be connected to
one or more secondary networks (e.g., network 18),

US 9,477,800 B1

7

examples of which may include but are not limited to: a local
area network; a wide area network: or an intranet, for
example.

Server computer 12 may execute an electronic design
automation (EDA) application (e.g., EDA application 20),
examples of which may include, but are not limited to those
available from the assignee of the present application. EDA
application 20 may interact with one or more EDA client
applications (e.g., EDA client applications 22, 24, 26, 28) for
electronic design optimization.

CSA selection process 10 may be a stand alone applica-
tion, or may be an applet/application/script that may interact
with and/or be executed within EDA application 20. In
addition/as an alternative to being a server-side process.
CSA selection process 10 may be a client-side process (not
shown) that may reside on a client electronic device (de-
scribed below) and may interact with an EDA client appli-
cation (e.g., one or more of EDA client applications 22, 24,
26, 28). Further, CSA selection process 10 may be a hybrid
server-side/client-side process that may interact with EDA
application 20 and an EDA client application (e.g., one or
more of client applications 22, 24, 26, 28). As such, CSA
selection process 10 may reside, in whole, or in part, on
server computer 12 and/or one or more client electronic
devices.

The instruction sets and subroutines of EDA application
20, which may be stored on storage device 16 coupled to
server computer 12 may be executed by one or more
processors (not shown) and one or more memory modules
(not shown) incorporated into server computer 12.

The instruction sets and subroutines of EDA client appli-
cations 22, 24, 26, 28, which may be stored on storage
devices 30, 32, 34, 36 (respectively) coupled to client
electronic devices 38, 40, 42, 44 (respectively), may be
executed by one or more processors (not shown) and one or
more memory modules (not shown) incorporated into client
electronic devices 38, 40, 42, 44 (respectively). Storage
devices 30, 32, 34, 36 may include but are not limited to:
hard disk drives; solid state drives, tape drives; optical
drives; RAID arrays; random access memories (RAM);
read-only memories (ROM), compact flash (CF) storage
devices, secure digital (SD) storage devices, and a memory
stick storage devices. Examples of client electronic devices
38, 40, 42, 44 may include, but are not limited to, personal
computer 38, laptop computer 40, mobile computing device
42 (such as a smart phone, netbook, or the like), notebook
computer 44, for example. Using client applications 22, 24,
26, 28, users 46, 48, 50, 52 may access EDA application 20
and may allow users to e.g., utilize CSA selection process
10.

Users 46, 48, 50, 52 may access EDA application 20
directly through the device on which the client application
(e.g., client applications 22, 24, 26, 28) is executed, namely
client electronic devices 38, 40, 42, 44, for example. Users
46, 48, 50, 52 may access EDA application 20 directly
through network 14 or through secondary network 18.
Further, server computer 12 (i.e., the computer that executes
EDA application 20) may be connected to network 14
through secondary network 18, as illustrated with phantom
link line 54.

The various client electronic devices may be directly or
indirectly coupled to network 14 (or network 18). For
example, personal computer 38 is shown directly coupled to
network 14 via a hardwired network connection. Further,
notebook computer 44 is shown directly coupled to network
18 via a hardwired network connection. Laptop computer 40
is shown wirelessly coupled to network 14 via wireless

10

15

20

25

30

35

40

45

50

55

60

65

8

communication channel 66 established between laptop com-
puter 40 and wireless access point (i.e., WAP) 68, which is
shown directly coupled to network 14. WAP 68 may be, for
example, an IEEE 802.11a, 802.11b, 802.11g, Wi-Fi, and/or
Bluetooth device that is capable of establishing wireless
communication channel 66 between laptop computer 40 and
WAP 68. Mobile computing device 42 is shown wirelessly
coupled to network 14 via wireless communication channel
70 established between mobile computing device 42 and
cellular network/bridge 72, which is shown directly coupled
to network 14.

As is known in the art, all of the IEEE 802.11x specifi-
cations may use Ethernet protocol and carrier sense multiple
access with collision avoidance (i.e., CSMA/CA) for path
sharing. The various 802.11x specifications may use phase-
shift keying (i.e., PSK) modulation or complementary code
keying (i.e., CCK) modulation, for example. As is known in
the art, Bluetooth is a telecommunications industry specifi-
cation that allows e.g., mobile phones, computers, and
personal digital assistants to be interconnected using a
short-range wireless connection.

Client electronic devices 38, 40, 42, 44 may each execute
an operating system, examples of which may include but are
not limited to Microsoft Windows, Microsoft Windows
CE®, Red Hat Linux, or other suitable operating system.
(Windows CE is a registered trademark of Microsoft Cor-
poration in the United States, other countries, or both).

The term “design” as used herein may refer to, but is not
limited to, an integrated circuit design, or any other suitable
type of electronic design, such as those associated with
electronic design automation tools. For example, an elec-
tronic design may refer to a combination of hardware (e.g.
described by a hardware description language) and software
to implement a range of functions. The function performed
by the system may be determined by the way in which the
design is configured and the data is presented to the design.
Numerous designs may be simulated and any number of
engines of various types may be used without departing
from the scope of the present disclosure.

In some embodiments, one or more of the designs may be
hardware based. Additionally and/or alternatively, one or
more of the designs may be software based. For example, the
operation of the first design may be a hardware operation
and the operation of the second design may be a software
operation. Accordingly, CSA selection process 10 may uti-
lize hardware, software and any combination thereof. For
example, the control of the configuration may come from
either hardware or software. In some embodiments, hybrid
hardware/software engines may be both be used without
departing from the scope of the present disclosure.

The phrase “randomize call” may refer to its plain and
understood meaning as well as to its definition as provided
in the SystemVerilog Language Reference Manual. IEEE
Standard 1800. It may refer to a built-in virtual method for
every class. First, a class may be declared with one or more
random variables and optionally one or more constraints on
those variables. When the flow of execution reaches the
randomize statement in the code, random numbers may be
chosen for the random variables in the class being random-
ized. The random numbers may be chosen to fall within any
constraints that have been specified.

By way of example, and in operation, a class may be
declared with one or more random variables and optionally
one or more constraints on those variables:

class C;

rand int x;
constraint cnt {x<100;}
endclass: C

US 9,477,800 B1

9

Then, an instance of that class may be created:

C my_c=new()

Then, the class instance may be randomized using some
process (e.g., a thread, etc.):

initial begin

assert(my_c.randomize());

end
which may run during simulation. It should be noted that any
portions of code or pseudocode included herein are provided
merely by way of example and are not intended to limit the
scope of the present disclosure.

In some embodiments, CSA selection process 10 may
uniquely identify the code that generates calls to the con-
straint solver in the verification environment. These unique
identifiers can then be associated with the set of results
obtained for that code and the record of the performance of
each constraint solver algorithm on each uniquely identified
piece of constraint solver calling code. This algorithm
performance information may be recorded for each unique
identifier. When the simulation is run again the stored
algorithm performance information can be used to determine
the best algorithm to run or the probability of choosing each
algorithm can be determined by its performance for each
uniquely identified call to the constraint solver.

Referring now to FIGS. 3-5, embodiments of CSA selec-
tion process 10, discussed below in further detail, may allow
for automatic selection of the most appropriate constraint
solver algorithm for use with each randomize call in a
particular verification environment. In this way, CSA selec-
tion process 10 may be configured to provide a flow to run
the simulation (or regression) once. At each randomize call,
CSA selection process 10 may iterate many times for each
available constraint solver algorithm. CSA selection process
10 may then determine how much coverage (e.g., unique
values) is obtained from each algorithm. This may be
mapped to both user and automatically generated coverage.
The results may be written out and stored so that future
simulations know the best constraint solver algorithm to
pick for each randomize call (or one algorithm may be run
more often for a given call).

Referring to FIG. 4, an exemplary flowchart 400 depicting
operations consistent with CSA selection process 10 is
provided. CSA selection process 10 may include providing
(402), using one or more processors, an electronic design
verification environment having a plurality of randomize
calls associated therewith. Embodiments may also include
selecting (404) one of the plurality of randomize calls for
analysis at a constraint solver engine and iteratively analyz-
ing (406) the selected randomize call using a plurality of
constraint solver algorithms. Embodiments may also include
automatically determining (408) a most effective constraint
solver algorithm for the selected randomize call. CSA selec-
tion process 10 may be configured to perform a single run to
measure which constraint solver algorithm is the most
effective at reaching coverage for each randomize call.

In some embodiments, and as shown in FIG. 5, CSA
selection process 10 may include providing (402) an elec-
tronic design verification environment 502 having a plurality
of randomize calls 502A-E associated therewith. Although
five randomize calls are shown in the Figure it should be
noted that any number may be used without departing from
the scope of the subject application.

In some embodiments, CSA selection process 10 may
include selecting (404) one of the plurality of randomize
calls (in this example, randomize call 502B) for analysis at
a constraint solver engine 504. Any suitable constraint

20

25

40

45

55

10

solver engine 504 may be used, such as those available from
the Assignee of the subject application.

In some embodiments. CSA selection process 10 may
include iteratively analyzing (406) the selected randomize
call using a plurality of constraint solver algorithms asso-
ciated with constraint solver engine 504. This analysis may
include determining a coverage amount created by each of
the plurality of constraint solver algorithms. For example,
algorithm 1 may correspond to an IEEE algorithm while
algorithms 2 and 3 may correspond to non-IEEE algorithms.
Algorithms of any type and number may be used without
departing from the scope of the subject application.

In some embodiments, CSA selection process 10 may be
configured to automatically determine (408) a most effective
constraint solver algorithm for the selected randomize call.
Accordingly, and as shown in FIG. 5, CSA selection process
10 may generate at least one result set 506 indicating the
relative effectiveness of each of the plurality of constraint
solver algorithms for the selected randomize call. This result
set may be stored using any suitable approach, for example
using any of the storage devices shown in FIG. 3.

For example, and as shown in FIG. 5, randomize call 2
generated a result set having 10% coverage effectiveness for
algorithm 1, 70% coverage effectiveness for algorithm 2,
and 20% coverage effectiveness for algorithm 3. Separate
results sets, each with differing degrees of effectiveness,
were generated for randomize calls, 1, 3, 4, and 5.

In some embodiments, CSA selection process 10 may be
configured to increase the coverage gained per simulation by
using the most effective constraint solver algorithm for each
constraint call. Additionally and/or alternatively, CSA selec-
tion process 10 may increase the frequency with which the
most effective algorithm is selected.

In this way, and as shown in the verification environment
508 of FIG. 5, CSA selection process 10 may include
selecting the most effective constraint solver algorithm and
performing a simulation based upon, at least in part, the
stored result set. This may include automatically determin-
ing a proportion of one or more of the plurality of constraint
solver algorithms for the selected randomize call. CSA
selection process 10 may be configured to apply each of the
plurality of constraint solver algorithms in the determined
proportion during a simulation.

In some embodiments, some of the algorithms could give
quite different distributions (that are not SystemVerilog
LRM compliant). Some algorithms could add solve_before
constraints for skewed distributions automatically, which
may dramatically improve the generated distribution for
certain sets of constraints (e.g., randomize calls).

Embodiments of CSA process 10 may generate high
coverage and locate bugs far faster (with fewer simulations)
than existing approaches. CSA process 10 may generate
random distributions from their coverage models that match
the coverage they want (or the coverage that we automati-
cally generate). As a result, the engineer or designer may not
need to run another simulator to see if the different constraint
solver algorithm finds different bugs or reaches other cov-
erage. The ability to measure and record which algorithm to
use for future simulations may dramatically improve the
coverage convergence of the environment and the rate at
which it catches bugs.

Another example consistent with the teachings of CSA
selection process 10 is provided below. In this example,
there may be three randomize calls, each identified with a
comment (again, the pseudocode listed below is included
merely by way of example and is not intended to limit the
scope of the present disclosure):

US 9,477,800 B1

11
package my_package;
class first;
rand int a;
rand int b;
constraint constraint] { a>=0;}
constraint constraint2 { a<=1;}
constraint constraint3 { b>0;}
constraint constraint4 { b<100;}
endclass//first
class second;
rand int a;
rand int b;
constraint constraintl { a>=0;}
constraint constraint2 { a<=1;}
constraint constraint3 { b>0;}
constraint constraint4 { b<10;}
constraint bias {
if (a=—=0) b=—0;

endclass//second

class third;
rand int a;
rand int b;
constraint constraint] { a>=0;}
constraint constraint2 { a<=1;}
constraint constraint3 { b>0;}
constraint constraint4 { b<100;}
constraint bias {

if (a=—=0) b=—0;

¥
endclass//third
class test;
first first_h;
second second_h;
third third_h;
task run();
first_h=new();
second_h=new();
third_h=new();

if (first_h.randomize()) begin//uniquely identified
$display(“RANDOMIZE

randomize call 1
FAILED”);

end

$display(“Randomize call 1 picked: a %0d b %0d”,

first_h.a, first_h.b);

if ('second_h.randomize()) begin//uniquely identi-
fied randomize call 2 $display(“RANDOMIZE

FAILED”);
end

$display(“Randomize call 2 picked: a %0d b %0d”,

second_h.a, second_h.b);
for (int loop=0;loop <11;loop++) begin

if (!third_h.randomize()) begin//uniquely identi-

fied randomize call 3
$display(“RANDOMIZE

though it is called multiple times in a loop)
end

$display(“Randomize call 3 picked: a %0d b

%0d”, third_h.a, third_h.b);
end

endtask//run
endclass//test
endpackage//my_package
module th_top();

import my_package::*;

test test_h;

initial begin

FAILED”)://(even

5

10

15

20

25

30

35

40

45

50

55

60

65

test_h=new();
test_h.run();
end
endmodule//tb_top

The results of running this example once are provided

below:
Randomize call 1 picked
Randomize call 2 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked
Randomize call 3 picked

The results of running this example and stopping and
iterating 20 times on each randomize call are provided

below:
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked
Randomize call 1 picked

Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 2 picked:
Randomize call 3 picked:
Randomize call 3 picked:
Randomize call 3 picked:

12

:a0b71
calbs

:alb30
calb26
calbs

calb52
:albo3
calbs

calbo64
:albol
:alb5s0
:alb85
:alb71

:alb3l
:a0b8l1
:alb30
:a0b76
:a0bé6
:a0bo9s
:a0b 86
:alb56
:alb99
:alb55s
:alb65
:alb8
:alb59
:alb90
:alb9
:a0b 14
:a0b85
calbl6
calb52
:alb90
:alb89

US 9,477,800 B1

13

Randomize call 3 picked: a 1 b 47

Randomize call 3 picked: a 1 b 78

Randomize call 3 picked: a 1 b 31

Randomize call 3 picked: a 1 b 10

Randomize call 3 picked: a 1 b 32

Randomize call 3 picked: a 1 b 27

Randomize call 3 picked: a 1 b 42

Randomize call 3 picked: a 1 b 10

Randomize call 3 picked: a 1 b 21

Randomize call 3 picked: a 1 b 46

Randomize call 3 picked: a 1 b 63

Randomize call 3 picked: a 1 b 68

Randomize call 3 picked: a 1 b 17

Randomize call 3 picked: a 1 b 65

Randomize call 3 picked: a 1 b 70

Randomize call 3 picked: a 1 b 48

Randomize call 3 picked: a 1 b 45

In the second and third randomize call there is a bias away
from a=0 because a only becomes 0 if b is randomly picked
as 0 as well.

Additionally and/or alternatively, if a constraint solver
algorithm is selected that automatically inserts a solve
before in this type of example the following results may be
generated:

Randomize call 1 picked: a 1 b 85

Randomize call 1 picked: a 0 b 62

Randomize call 1 picked: a 0 b 13

Randomize call 1 picked: a0 b 8

Randomize call 1 picked: a 1 b 1

Randomize call 1 picked: a 1 b 2

Randomize call 1 picked: a 0 b 20

Randomize call 1 picked: a 1 b 18

Randomize call 1 picked: a 0 b 60

Randomize call 1 picked: a 0 b 49

Randomize call 1 picked: a 1 b 14

Randomize call 1 picked: a 1 b 26

Randomize call 1 picked: a 0 b 10

Randomize call 1 picked: a 0 b 15

Randomize call 1 picked: a 1 b 80

Randomize call 1 picked: a 0 b 30

Randomize call 1 picked: a0 b 14

Randomize call 1 picked: a 0 b 77

Randomize call 1 picked: a O b 4

Randomize call 1 picked: a 0 b 46

Randomize call 1 picked: a 0 b 61

Randomize call 2 picked: a0 b 8

Randomize call 2 picked: a0 b 6

Randomize call 2 picked: a0 b 6

Randomize call 2 picked: a 1 b 2

Randomize call 2 picked: a 1 b 6

Randomize call 2 picked: a1 b 5

Randomize call 2 picked: a0 b 8

Randomize call 2 picked: a0 b 3

Randomize call 2 picked: a1 b 5

Randomize call 2 picked: a 1 b 1

Randomize call 2 picked: a0 b 9

Randomize call 2 picked: a0 b 6

Randomize call 2 picked: a0 b 1

Randomize call 2 picked: a0 b 3

Randomize call 2 picked: a0 b 6

Randomize call 2 picked: a 1 b 8

Randomize call 2 picked: a0 b 2

Randomize call 2 picked: a0 b 2

Randomize call 2 picked: a0 b 5

Randomize call 2 picked: a 1 b 8

Randomize call 2 picked: a 1 b 4

Randomize call 3 picked: a 1 b 77

10

15

20

25

30

35

40

45

50

55

60

65

14

Randomize call 3 picked: a 1 b 53

Randomize call 3 picked: a 1 b 86

Randomize call 3 picked: a 1 b 83

Randomize call 3 picked: a 0 b 76

Randomize call 3 picked: a 1 b 29

Randomize call 3 picked: a 0 b 42

Randomize call 3 picked: a 0 b 70

Randomize call 3 picked: a 1 b 12

Randomize call 3 picked: a 0 b 43

Randomize call 3 picked: a 1 b 91

Randomize call 3 picked: a 0 b 64

Randomize call 3 picked: a 0 b 8

Randomize call 3 picked: a 0 b 73

Randomize call 3 picked: a 0 b 32

Randomize call 3 picked: a 0 b 26

Randomize call 3 picked: a 1 b 67

Randomize call 3 picked: a 0 b 90

Randomize call 3 picked: a 0 b 67

Randomize call 3 picked: a 1 b 38

Accordingly, CSA selection process 10 may be configured
to increase the coverage and number of unique values seen
for certain sets of constraints by choosing different con-
straint solver algorithms.

In some embodiments, the relative effectiveness of each
algorithm may be calculated from the result set and that
calculated effectiveness stored. The effectiveness of the
algorithm may be calculated from the increase in coverage
(e.g., user generated, automatically generated, etc.) or from
the proportion of unique value sets generated for the random
variables in the constraint solve call. CSA process 10 may
also include automatically determining a proportion of one
or more of the plurality of constraint solver algorithms for
the selected randomize call based upon, at least in part the
stored result set or the calculated effectiveness. CSA process
10 may further include applying each of the plurality of
constraint solver algorithms in the determined proportion
during a simulation. CSA process 10 may also include
selecting the most effective constraint solver algorithm and
performing a simulation based upon, at least in part, the
stored result set or the calculated effectiveness. In some
embodiments, iteratively analyzing may include determin-
ing a coverage amount created by each of the plurality of
constraint solver algorithms.

In some embodiments, CSA process 10 may be config-
ured to store a result set for each algorithm and then
determine which provided the most unique values. Addi-
tionally and/or alternatively, in some embodiments, CSA
process 10 may be configured to run a certain number of
iterations then see how the coverage had increased (e.g. see
how the coverage counters looking at the numbers had
incremented. In some embodiments iteratively analyzing
may include determining the proportion of unique results
obtained from iteratively running the solver on each algo-
rithm.

Embodiments may also include determining the most
effective algorithm for each randomize call in the verifica-
tion environment. Embodiments may also include using the
results from each uniquely identified randomize call to
determine the best algorithms to run for each randomize call
in an environment.

It will be apparent to those skilled in the art that various
modifications and variations can be made in the embodi-
ments of the present disclosure without departing from the
spirit or scope of the present disclosure. Thus, it is intended
that embodiments of the present disclosure cover the modi-
fications and variations provided they come within the scope
of the appended claims and their equivalents.

US 9,477,800 B1

15

What is claimed is:

1. A computer-implemented method for electronic design
verification comprising:

providing, using one or more processors, an electronic

design verification environment having a plurality of
randomized calls associated therewith;

selecting one of the plurality of randomized calls for

analysis at a constraint solver engine;

iteratively analyzing the selected randomized call using a

plurality of constraint solver algorithms;
automatically determining a most effective constraint
solver algorithm for the selected randomized call; and
generating at least one result set indicating relative effec-
tiveness of each of the plurality of constraint solver
algorithms for the selected randomized call.

2. The computer-implemented method of claim 1, further
comprising:

storing the at least one result set.

3. The computer-implemented method of claim 2, further
comprising:

selecting the most effective constraint solver algorithm

and performing a simulation based upon, at least in
part, the stored at least one result set.

4. The computer-implemented method of claim 1, further
comprising:

automatically determining a proportion of each of two or

more of the plurality of constraint solver algorithms for
the selected randomized call.

5. The computer-implemented method of claim 4, further
comprising:

applying each of said two or more of the plurality of

constraint solver algorithms in the determined propor-
tion during a simulation.

6. The computer-implemented method of claim 1,
wherein the iteratively analyzing includes determining a
coverage amount created by each of the plurality of con-
straint solver algorithms.

7. A non-transitory computer-readable storage medium
for electronic design verification, the non-transitory com-
puter-readable storage medium having stored thereon
instructions that, when executed by a machine, result in one
or more operations, the operations comprising:

providing, using one or more processors, an electronic

design verification environment having a plurality of
randomized calls associated therewith;

selecting one of the plurality of randomized calls for

analysis at a constraint solver engine;

iteratively analyzing the selected randomized call using a

plurality of constraint solver algorithms;
automatically determining a most effective constraint
solver algorithm for the selected randomized call; and
generating at least one result set indicating relative effec-
tiveness of each of the plurality of constraint solver
algorithms for the selected randomized call.

8. The non-transitory computer-readable storage medium
of claim 7, further comprising:

storing the at least one result set.

10

15

20

25

30

35

40

45

50

55

16

9. The non-transitory computer-readable storage medium
of claim 8, further comprising:

selecting the most effective constraint solver algorithm
and performing a simulation based upon, at least in
part, the stored at least one result set.

10. The non-transitory computer-readable
medium of claim 7, further comprising:

storage

automatically determining a proportion of each of two or
more of the plurality of constraint solver algorithms for
the selected randomized call.

11. The non-transitory computer-readable
medium of claim 10, further comprising:

storage

applying each of said two or more of the plurality of
constraint solver algorithms in the determined propor-
tion during a simulation.

12. The non-transitory computer-readable storage
medium of claim 7, wherein the iteratively analyzing
includes determining a coverage amount created by each of
the plurality of constraint solver algorithms.

13. A system for electronic design verification compris-
ing:

one or more processors configured to provide an elec-
tronic design verification environment having a plural-
ity of randomized calls associated therewith, the one or
more processors further configured to select one of the
plurality of randomized calls for analysis at a constraint
solver engine, the one or more processors further
configured to iteratively analyze the selected random-
ized call using a plurality of constraint solver algo-
rithms, the one or more processors further configured to
automatically determine a most effective constraint
solver algorithm for the selected randomized call, the
one or more processors are further configured to gen-
erate at least one result set indicating relative effec-
tiveness of each of the plurality of constraint solver
algorithms for the selected randomized call.

14. The system of claim 13, wherein the one or more
processors are further configured to store the at least one
result set.

15. The system of claim 14, wherein the one or more
processors are further configured to select the most effective
constraint solver algorithm and perform a simulation based
upon, at least in part, the stored at least one result set.

16. The system of claim 13, wherein the one or more
processors are further configured to automatically determine
a proportion of each of two or more of the plurality of
constraint solver algorithms for the selected randomized
call.

17. The system of claim 16, wherein the one or more
processors are further configured to apply each of said two
or more of the plurality of constraint solver algorithms in the
determined proportion during a simulation.

#* #* #* #* #*

